
N95- 19749

%
A Parallel Strategy for Implementing Real-Time

Expert Systems Using CLIPS

Laszlo A. Ilyes & F. Eugenio Villaseca

Cleveland State University

Dept. of Electrical Engineering

1983 East 24th Street

Cleveland, Ohio 44115

John DeLaat

NASA Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

ABSTRACT

As evidenced by current literature, there appears to be a continued interest in the study of real-

time expert systems. It is generally recognized that speed of execution is only one consideration

when designing an effective real-time expert system. Some other features one must consider are

the expert system's ability to perform temporal reasoning, handle interrupts, prioritize data,

contend with data uncertainty, and perform context focusing as dictated by the incoming data to

the expert system.

This paper presents a strategy for implementing a real time expert system on the iPSC/860

hypercube parallel computer using CLIPS. The strategy takes into consideration, not only the
execution time of the software, but also those features which define a true real-time expert

system. The methodology is then demonstrated using a practical implementation of an expert

system which performs diagnostics on the Space Shuttle Main Engine (SSME).

This particular implementation uses an eight node hypercube to process ten sensor measurements

in order to simultaneously diagnose five different failure modes within the SSME. The main

program is written in ANSI C and embeds CLIPS to better facilitate and debug the rule based

expert system.

INTRODUCTION

Strictly defined, an expert system is a computer program which imitates the functions of a human

expert in a particular field [1]. An expert system may be described as a real-time expert system if

it can respond to user inputs within some reasonable span of time during which input data remains

valid. A vast body of recently published research clearly indicates an active interest in the area of

real-time expert systems [2-12].

Science and engineering objectives for future NASA missions require an increased level of

autonomy for both onboard and ground based systems due to the extraordinary quantities of

information to be processed as well as the long transmission delays inherent to space missions.

[13]. An expert system for REusable Rocket Engine Diagnostics Systems (REREDS) has been

investigated by NASA Lewis Research Center [14, 15, 16]. Sequential implementations of the

expert system have been found to be too slow to analyze data for practical implementation. As

implemented sequentially, REREDS already exhibits a certain degree of inherent parallelism. Ten

212

(Value "How are you 7")
)

)
; Send the buffer to our new friend?
(BMSend ?Identity ?BuiRef)

; Deslmy the buffer
(BMDestroy ?BuiRef)

(defrule RECEIVE
(declare (salience -10000))
?REC <- (RECEIVE)

_-->

(BMReceivc)
(retract ?REC)
(assert(RECEIVE))

)
Figure 5. A CMS Sample

CONCLUSION

PVM and CLIPS both provide free source code systems that are well maintained by developers
and a sizable number of users. Relative few source code changes are necessary to either system
in order to build a reliable and robust platform that will support distributed computing in a
heterogeneous environment of CPUs operating under UNIX. The CMS system described in this
paper provides the CLIPS interface code and some parsing code sufficient to enable efficient use

of PVM facilities and communication of CLIPS facts and templates among C, C ++, and CLIPS
processes within a PVM virtual machine. Even more efficient communication can be obtained

through enhancements to the PVM source code that can provide more efficient allocation of
memory and reuse of PVM message buffers in certain applications.

NOTES

Information on PVM is best obtained by anonymous ftp from: netlib2.cs.utk.edu
Shar and tar packages are available from the same source.

The authors are currently using the CMS system in applications that involve multiple CLIPS
expert systems in sophisticated interactive user interface settings. It is expected that the basic
CMS code will become available in the Spring, 1995. Inquiries via e-mail are preferred.

BIBLIOGRAPHY

1. Riley, Gary, B. Donnell et. al., "CLIPS Reference Manual," JSC-25012, Lyndon B. Johnson
Space Center, Houston, Texas, June, 1993.

2. Pohl, Jens, A. Chapman, L.Chirica, R. Howell, and L. Myers, "Implementation Strategies for a
Prototype ICADS Working Model," CADRU-02-88, CAD Research Unit, Design Institute,
School of Architecture and Design, Cal Poly, San Luis Obispo, California, June, 1988.

3. Myers, Leonard and J. Pohl, "ICADS Expert Design Advisor: An Aid to Reflective Thinking,"
Knowledge-Based Systems, London, Vol. 5, No. 1, March, 1992, pp. 41-54.

4. Pohl, Jens and L. Myers, "A Distributed Cooperative Model for Architectural Design,"
Automation In Construction, Amsterdam, 3, 1994, pp. 177-185.

6. Geist, A1, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, "PVM 3 User's

Guide and Reference Manual," ORNLfFM-12187, Oak Ridge National Laboratory, Oak Ridge
• Tennessee, May, 1993.

211

sensor measurements are used to diagnose the presence of five different failures which may

manifest themselves in the working SSME. Each module of code which diagnoses one failure is
referred to as a failure detector. While some of the sensor measurements are shared between

failure detectors, the computations within these detectors are completely independent of one
other.

One apparent way to partition the problem of detecting failures in the SSME, is to assign each

failure detector to its own node on the hypercube system. Because the failure detectors may be

processed simultaneously, a speedup in the execution is expected. But while execution time is a

critical parameter in any real-time expen system, it is not the only ingredient required in order to

guarantee its success. A recent report characterized the features required of expert systems to

operate in real-time. In addition to the requirement of fast execution, the real-time expert system

should also possess the ability to perform context focusing, interrupt handling, temporal

reasoning, uncertainty handling, and truth maintenance. Furthermore, the computational time

required by the system should be predictable and the expert system should potentially be able to

communicate with other expert systems [17]. These aspects are considered in the design

presented in this paper.

METHODS

The rules for diagnosing failures in the SSME were elicited from NASA engineers and translated

into an off-line implementation of a REREDS expert system [18]. While some of the failures can

be diagnosed using only sensor measurements, other failures require both data measurements and

the results obtained from condition monitors. The condition monitors measure both angular

velocity and acceleration on various bearings of the High Pressure Oxidizer Turbo-Pump

(HPOTP) shaft and determine the magnitudes of various torsional modes in the HPOTP shaft

[19]. Due to the lack of availability of high frequency bearing data and additional hardware

requirements for implementing real-time condition monitors, this expert system considered only

those failure detectors which required sensor measurements alone.

The five failure detectors which rely solely on sensor measurements for diagnosis are listed in

Table 1 along with a description of the failure, the required sensor measurements, and their

respective, relative failure states. Notice that failure detectors designated F11 and F15 cannot be

differentiated from one another and are thus combined into one single failure mode.

For each sensor measurement listed, the expert system knowledge base is programmed with a set

of nominal values and deviation values (designated in our work by o). One of the roles of the

expert system is to match incoming sensor measurements with the nominal and deviation values

which correspond to the specific power level of the SSME at any given time. Any sensor

measurement may deviate from the nominal value by + a without being considered high or low

relative to nominal. Beyond the t_ deviation, the sensor measurement is rated with a value which is

linearly dependent upon the amount of deviation. This value is referred to as a vote and is used by

a failure detector to determine a confidence level that the failure mode is present. This voting

curve is illustrated in Figure 1.

213

Oncea vote hasbeenassignedto everysensormeasurement,eachfailure detector averages the

votes for all of its corresponding sensor measurements. The final result will be a number between

-1.00 and +1.00. This result is converted to a percent and is

Failure

Detector

F11/15

F67

Description

Labyrinth/Turbine Seal Leak

HPOTP Turbine Interstage &

Tip Seal Wear

Measurements

LPFP Discharge Pressure
FPOV Valve Position

HPFTP Turbine Discharge Temp.

HPOTP Discharge Temperature

HPOP Discharge Pressure

HPOTP Shaft Speed
MCC Pressure

Failure

States

Low

High

High

Low

Low

Low

Low

F68 Intermediate Seal Wear Secondary Seal Drain Temperature Low
HPOTP Inter-Seal Drain Pressure Low

F69 HPOP Primary Seal Wear

Pump Cavitation

HPOP Primary Seal Drain Pressure

Secondary Seal Drain Pressure

Secondary Seal Drain Temperature

HPOP Discharge Pressure

HPOTP Shaft Speed
MCC Pressure

F70

High

High

High

Low

LOw

Low

Table 1. - Failure Detectors Only Requiring Sensor

Measurements for Failure Diagnosis

FaitureVote

1.0

0.0

-1.0

t
I'_rrtrd

Ml_:zulw'rlrt
Vdu_ /

Range of Measuremer,_t_l_

1.0

0.0

-I.0

Figure 1. - Voting Curve for Sensor Measurement with "High" Failure State

referred to as the corresponding confidence level of that failure mode. The underlying motivation

for this approach is to add inherent uncertainty handling to the expert system.

214

Each individual failure detector was implemented in CLIPS on a personal computer and its

accuracy was tested and verified using simulated SSME sensor data. Once satisfactory results

were achieved, an ANSI C program was written for the iPSC/860 hypercube computer which

would initialize the CLIPS environment on five nodes of a 23 hypercube structure. These five

nodes, referred to as the failure detector nodes, load the constructs for one failure detector each,

and use CLIPS as an embedded application as described in the CLIPS Advanced Programming

Guide [20]. In this way, CLIPS will only be used for evaluation of the REREDS rules. All other

programming requirements, including opening and closing of sensor measurement data files,

preliminary data analysis, and program flow control are handled in C language. By embedding the

CLIPS modules within ANSI C code, context focusing and process interruptions can be more

efficiently realized.

Coordination of data acquisition and distribution among the failure detector nodes is

accomplished through a server node which is programmed to furnish sensor measurement data to

requesting nodes. Since the data for this study originate from the SSME simulator test bed, data

retrieval is accomplished simply by reading sequential data from prepared data files. The server

node transfers incoming sensor measurements into an indexed memory array, or blackboard, from

which data are distributed upon request to the failure detector nodes. When the blackboard is

updated, all requests for data are ignored until data transfer is completed. This assures that

reasoning within the expert system is always performed on contemporaneous data. The server

node does not invoke the CLIPS environment at any time. It is programmed entirely in C

language code.

One additional node, referred to as the manager node, is used by the expert system to coordinate

the timing between the failure detector nodes and the server node. Like the server node, the

manager node does not invoke the CLIPS environment. Once the manager node has received a

"ready" message from all failure detector nodes, it orders the server node to refresh the data in the

blackboard. During this refresh, the failure detector nodes save their results to permanent storage

on the system. The activities and process flow of all three types of nodes used in this research are

illustrated in Figure 2. The asterisk denotes the point at which all nodes synchronize.

CONCLUSION

Prof'lling studies were conducted on the parallel implementation of the REREDS expert system. It

was found that the system could process the sensor measurements and report cortfidence levels

for all five failure modes in 18 milliseconds. A sequential implementation of the expert system on

the same hardware was found to require over 50 milliseconds to process and report the same

information, indicating that the parallel implementation can process data at nearly three times as

quickly. Considering the fact that seven processors are being used in the parallel implementation,

these results may seem somewhat disappointing, however, the profiling studies also indicate that

additional speedup can be realized in future implementations of this expert system if the data

blackboard is also parallelized. Using only one server node causes some hardware contention.

Shortly after the nodes synchronize, the failure detectors tend to overwhelm the server with five

215

FAILURE

DETECTOR

I

hou.O= CL/M
PACTS;.,--.

(a) (b)

MANAGER

NO

m._B

Figure 2. - Process flow for the

(c)

a) Server Node, b) Failure Detector Nodes, and c) Manager Node

216

(nearly) simultaneous data requests. By adding a second server node to the system, this

contention can be greatly reduced.

Since the data can be processed at a fast, continuous rate, the validity of sensor measurements can

be assured during processing. Consequently, truth maintenance is realized by suppressing data

requests to the server node until all sensor measurements have been simultaneously updated. This

guarantees that all data accessed by the failure detector nodes during any processing cycle is the

same "age."

Due to the nature of the particular expert system selected for this research, the time required by

the failure detectors to process SSME data remains constant regardless of whether or not a failure

condition exists. Thus, predictability is always assured for this example. Also, the need for

temporal reasoning is not explicitly indicated and is therefore not investigated. Since these aspects

of the design are application specific, they and must be investigated in future work using different

expert system models.

As discussed earlier, uncertainty handling is inherent to this expert system. The voting scheme and

use of confidence levels permits reasoning, even in the presence of noisy, incomplete, or

inconsistent data. Since the output from the system is a graded value rather than a binary value,

the output carries with it additional information about the expert system's confidence that a

particular failure is occurring.

One of the most important features of this design is that program flow control and system I/O is

accomplished in C language code. Using CLIPS as an embedded application within a fast,

compiled body of C language code allows the expert system to be more easily integrated into a

practical production system. Complex reasoning can be relegated directly and exclusively to the

nodes invoking the CLIPS environment, while tasks which are better suited to C language code

can be performed by the server and manager nodes. Thus, simple decisions can be realized quickly

in C language rather than relying on the slower CLIPS environment. Based on fast preprocessing

of the sensor measurements, the C language code can be used to initiate process interrupts during

emergency conditions and even change the context focusing of the expert system. Those tasks

which require complex reasoning can be developed and refined separately in CLIPS, taking full

advantage of the debugging tools available in the CLIPS development environment.

While the rules for this particular expert system are somewhat simple compared to other

applications considered in the literature, it is believed that the approach used in this study can be

extended to other examples. This study demonstrates that parallel processing can not only speed

up the execution of certain expert systems, but also incorporate other important features essential

for real-time operation.

ACKNOWLEDGMENTS

We would like to thank NASA Lewis Research Center for its financial support of this research

under cooperative agreement NCC-257 (supplement no. 3). We would also like to extend our

thanks to the technical support staff of the ACCL and the internal reviewers at NASA Lewis

217

Research Center, as well as Mr. Gary Riley of NASA Johnson Space Center. It is only with their

patient and supportive contributions that this research was possible.

REFERENCES

1. Lugger, George and Stubblefi¢ld, William, "AI: History and Applications," ARTIFICIAL

INTELLIGENCE AND THE DESIGN OF EXPERT SYSTEMS, The Benjamin/Ounmings

Publishing Co. Inc., New York, NY, 1989, pp. 16-19.

o Leitch, R., "A Real-Time Knowledge Based System for Process Control," lEE

PROCEEDINGS, PART D: CONTROL, THEORY AND APPLICATIONS, Vol. 138, No.

3, May, 1991, pp. 217-227.

3. Koyama, K.,"Real-Timc Expert System for Gas Plant Operation Support (GAPOS)," 16TH

ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, November, 1990.

° Bahr, E., Barachini, F., Dopplebauer, J. Grabner, H. Kasperic, F., Mandl, T., and

Mistleberger, H., "Execution of Real-Time Expert Systems on a Multicomputer," 16th

ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, November, 1990.

5. Wang, C. Mok, A., and Cheng, A., "A Real-Time Rule Based Production System,"

PROCEEDINGS OF THE 11TH REAL-TIME SYSTEMS SYMPOSIUM, December, 1990.

. Moore, R., Rosenhof, H., and Stanley, G., "Process Control Using Real-Time Expert

System," PROCEEDINGS OF THE l lTH TRIENNIAL WORLD CONGRESS OF THE

INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL, August, 1990.

7. Lee, Y., Zhang, L., and Cameron, R., "ESC: An Expert Switching Control System,"

INTERNATIONAL CONFERENCE ON CONTROL, March, 1991.

° Jones, A., Porter, B., Fripp, R., and Pallet, S., "Real-Time Expert System for Diagnostics and

Closed Loop Control," PROCEEDINGS OF THE 5TH ANNUAL IEEE INTERNATIONAL

SYMPOSIUM ON INTELLIGENT CONTROL, September, 1990.

. Borsje, H., Finn, G., and Christian, J., "Real-Time Expert Systems and Data Reconciliation

for Process Applications," PROCEEDINGS OF THE ISA 1990 INTERNATIONAL

CONFERENCE AND EXHIBITION, Part 4 of 4, October, 1990.

10. Silagi, R. and Friedman, P., "Telemetry Ground Station Data Servers for Real-Time Expert

Systems," INTERNATIONAL TELEMETERING CONFERENCE, ITCAJSA, October,
1990.

11. Spinrad, M., "Facilities for Closed-Loop Control in Real-Time Expert Systems for Industrial

Automation," PROCEEDINGS OF THE ISAJ1989 INTERNATIONAL CONFERENCE

AND EXHIBIT, Part 2 of 4, october, 1990.

218

12. Hota, K., Nomura, H., Takemoto, H., Suzuki, K., Nakamura, S., and Fukui, S.,

"Implementation of a Real-Time Expert System for a Restoration Guide in a Dispatching

Center," IEEE TRANSACTIONS ON POWER SYSTEMS, Vol. 5, No. 3, 1990, pp. 1032-8.

13. Lau, S. and Yan, J. , "Parallel Processing and Expert Systems," NASA Technical

Memorandum, No. 103886, May, 1991.

14. Merrill, Walter and Lorenzo, Carl, "A Reusable Rocket Engine Intelligent Control," 24th

Joint Propulsion Conference, Cosponsored by AIAA, ASME, and ASEE, Boston MA, July
1988.

15. Guo T.-H. and Merrill, W., "A Framework for Real-Time Engine Diagnostics," 1990

Conference for Advanced Earth-to-Orbit Propulsion Technology," Marshall Space Flight

Center, May 1990.

16. Guo, T.-H., Merrill, W. , and Duyar, A., "Real-Time Diagnostics for a Reusable Rocket

Engine," NASA Technical Memorandum No. 105792, August 1992.

17. Kreidler, D. and Vickers, D., "Distributed Systems Status and Control," Final Report to

NASA Johnson Space Center, NASA CR 187014, September 1990.

18. Anex, Robert, "Reusable Rocket Engine Diagnostic System Design,"Final Report, NASA CR

191146, January 1993.

19. Randall, M.R., Barkadourian, S., Collins, J.J., and Martinez, C., "Condition Monitoring

Instrumentation for Space Vehicle Propulsion Systems," NASA CP 3012, pp. 562-569, May
1988.

20. CLIPS 6.0 User's Manual, Volume II, Advanced Programming Guide, pp. 43-142, June,
1993.

219

